Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Chinese Journal of Biotechnology ; (12): 1768-1783, 2022.
Article in Chinese | WPRIM | ID: wpr-927817

ABSTRACT

Bacillus spp. are probiotics and can secrete a variety of natural antimicrobiol active substances, of which lipopeptides are an important class. Up to now, about 90 lipopeptides have been identified, and most of them are cyclic lipopeptides. surfactin, iturin, fengycin, bacillomycin and polymyxins are widely studied, and the first three have huge potential for application due to their properties of surfactants and anti-fungal, anti-bacterial, anti-viral, anti-tumor and anti-inflammatory functions. In this paper, the research progress in the structure, function, synthesis regulation, separation, purification and production of surfactin, iturin and fengycin was reviewed. Synthetic biology is a vital means to increase the yield of lipopeptides, and in the future, lipopeptides can be used in crop cultivation, animal farming, food, medicine and petroleum industries as well as environmental protection. Future research should be strengthened on the discovery of new lipopeptides, synthesis of high-activity lipopeptides, economical production of lipopeptides on a large scale and their safety evaluation.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Bacillus , Bacillus subtilis , Lipopeptides/pharmacology , Peptides, Cyclic/pharmacology
2.
Braz. oral res. (Online) ; 34: e012, 2020. graf
Article in English | LILACS | ID: biblio-1055530

ABSTRACT

Abstract Lipoproteins are important bacterial immunostimulating molecules capable of inducing receptor activator of nuclear factor-κB (RANKL) and osteoclast formation in vitro and in vivo . Although these molecules are present in periodontopathogenic bacteria, their role in periodontitis is not known. In this study, we used Pam2CSK4 (PAM2), a synthetic molecule that mimics bacterial lipoprotein, to investigate the effects of lipoproteins on periodontitis in mice. C57BL/6 male mice were randomly divided into three experimental groups: 1) Negative control group: animals received vehicle injection; 2) Positive control group: animals received injection of Escherichia coli lipopolysaccharide (LPS); 3) PAM2 group: animals received PAM2 injection. All the injections were performed bilaterally every other day into the palatal mucosa between first and second molars. After twenty-four days, the animals were euthanized to assess alveolar bone volume (micro-CT), cellular and extracellular composition in the gingiva (stereometric analysis), and osteoclast numbers (TRAP staining). Treatment with either PAM2 or LPS induced gingival inflammation, as demonstrated by increased infiltration of inflammatory cells and enhanced angiogenesis, associated with a smaller number of fibroblasts and decreased extracellular matrix. Importantly, treatment not only with LPS but also with PAM2 resulted in a larger number of TRAP+ multinucleated osteoclasts and significant loss of alveolar bone. Collectively, our data demonstrate that PAM2 can induce gingival inflammation and bone loss in mice, broadening the avenues of investigation into the role of lipoproteins in the pathogenesis of periodontal disease.


Subject(s)
Animals , Male , Periodontitis/etiology , Periodontitis/pathology , Toll-Like Receptor 2/antagonists & inhibitors , Lipopeptides/pharmacology , Osteoclasts/drug effects , Periodontitis/microbiology , Time Factors , Random Allocation , Alveolar Bone Loss/etiology , Alveolar Bone Loss/pathology , Disease Models, Animal , X-Ray Microtomography , Alveolar Process/drug effects , Alveolar Process/pathology , Tartrate-Resistant Acid Phosphatase , Gingiva/drug effects , Gingiva/pathology , Gingivitis/etiology , Gingivitis/pathology , Mice, Inbred C57BL
3.
Braz. oral res. (Online) ; 34: e012, 2020. graf
Article in English | LILACS | ID: biblio-1089395

ABSTRACT

Abstract Lipoproteins are important bacterial immunostimulating molecules capable of inducing receptor activator of nuclear factor-κB (RANKL) and osteoclast formation in vitro and in vivo . Although these molecules are present in periodontopathogenic bacteria, their role in periodontitis is not known. In this study, we used Pam2CSK4 (PAM2), a synthetic molecule that mimics bacterial lipoprotein, to investigate the effects of lipoproteins on periodontitis in mice. C57BL/6 male mice were randomly divided into three experimental groups: 1) Negative control group: animals received vehicle injection; 2) Positive control group: animals received injection of Escherichia coli lipopolysaccharide (LPS); 3) PAM2 group: animals received PAM2 injection. All the injections were performed bilaterally every other day into the palatal mucosa between first and second molars. After twenty-four days, the animals were euthanized to assess alveolar bone volume (micro-CT), cellular and extracellular composition in the gingiva (stereometric analysis), and osteoclast numbers (TRAP staining). Treatment with either PAM2 or LPS induced gingival inflammation, as demonstrated by increased infiltration of inflammatory cells and enhanced angiogenesis, associated with a smaller number of fibroblasts and decreased extracellular matrix. Importantly, treatment not only with LPS but also with PAM2 resulted in a larger number of TRAP+ multinucleated osteoclasts and significant loss of alveolar bone. Collectively, our data demonstrate that PAM2 can induce gingival inflammation and bone loss in mice, broadening the avenues of investigation into the role of lipoproteins in the pathogenesis of periodontal disease.


Subject(s)
Animals , Male , Periodontitis/etiology , Periodontitis/pathology , Toll-Like Receptor 2/antagonists & inhibitors , Lipopeptides/pharmacology , Osteoclasts/drug effects , Osteoclasts/physiology , Periodontitis/microbiology , Time Factors , Random Allocation , Alveolar Bone Loss/etiology , Alveolar Bone Loss/pathology , Disease Models, Animal , X-Ray Microtomography , Alveolar Process/drug effects , Alveolar Process/pathology , Tartrate-Resistant Acid Phosphatase , Gingiva/drug effects , Gingiva/pathology , Gingivitis/etiology , Gingivitis/pathology , Mice, Inbred C57BL
4.
Braz. j. microbiol ; 47(4): 955-964, Oct.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-828202

ABSTRACT

Abstract The possible application of a bacterial strain - Bacillus subtilis R1, isolated from an oil contaminated desert site in India, as biocontrol agent and its biosurfactant in microbial enhanced oil recovery are discussed. The biosurfactant production in minimal medium was carried out at different temperatures and salt concentrations, where it produced an efficient biosurfactant at 30-45 °C and in presence of up to 7% salt. It significantly reduced the surface tension from 66 ± 1.25 mN/m to 29 ± 0.85 mN/m within 24 h. In order to enhance the biosurfactant production, random mutagenesis of B. subtilis R1 was performed using chemical mutagen - ethyl methanesulfonate. Majority of the isolated 42 mutants showed biosurfactant production, but the difference was statistically insignificant as compared with parent strain R1. Therefore none of the mutants were selected for further study, and only parent strain R1 was studied. The biosurfactant was quite stable under harsh conditions for up to 10 days. The biosurfactant was extracted and characterized as similar to the lipopeptide group - surfactins and fengycin. The crude oil displacement experiments using biosurfactant broth in sand pack glass columns showed 33 ± 1.25% additional oil recovery. The strain also showed inhibition of various plant pathogenic fungi on potato dextrose agar medium.


Subject(s)
Bacillus subtilis/metabolism , Lipopeptides/biosynthesis , Surface-Active Agents/metabolism , Surface-Active Agents/pharmacology , Bacillus subtilis/classification , Bacillus subtilis/genetics , RNA, Ribosomal, 16S/genetics , Microbial Sensitivity Tests , Mutagenesis , Spectroscopy, Fourier Transform Infrared , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Lipopeptides/pharmacology , Metabolic Engineering , Hydrogen-Ion Concentration , Antifungal Agents/metabolism , Antifungal Agents/pharmacology
5.
Braz. j. infect. dis ; 20(6): 539-545, Nov.-Dec. 2016. tab
Article in English | LILACS | ID: biblio-828164

ABSTRACT

ABSTRACT The antifungal activity of tacrolimus in combination with antifungal agents against different fungal species has been previously reported. Here we report the in vitro interactions between tacrolimus and amphotericin B, fluconazole, itraconazole, and caspofungin against 30 clinical isolates of both fluconazole-susceptible and fluconazole-resistant Trichosporon asahii. For these analyses, we used the broth microdilution method based on the M27-A3 technique and checkerboard microdilution method. Tacrolimus showed no activity against T. asahii strains (minimal inhibitory concentrations, MICs > 64.0 µg mL−1). However, a larger synergistic interaction was observed by the combinations tacrolimus + amphotericin B (96.67%) and tacrolimus + caspofungin (73.33%) against fluconazole-susceptible isolates. Combinations with azole antifungal agents resulted in low rates of synergism for this group (fluconazole + tacrolimus = 40% and itraconazole + tacrolimus = 10%). Antagonistic interactions were not observed. For the fluconazole-resistant T. asahii group, all tested combinations showed indifferent interactions. The synergism showed against fluconazole-susceptible T. asahii isolates suggests that the potential antifungal activity of tacrolimus deserves in vivo experimental investigation, notably, the combination of tacrolimus with amphotericin B or caspofungin.


Subject(s)
Humans , Trichosporon/drug effects , Tacrolimus/pharmacology , Calcineurin Inhibitors/pharmacology , Antifungal Agents/pharmacology , Microbial Sensitivity Tests , Fluconazole/pharmacology , Amphotericin B/pharmacology , Itraconazole/pharmacology , Drug Interactions , Drug Synergism , Echinocandins/pharmacology , Lipopeptides/pharmacology , Caspofungin
7.
Mem. Inst. Oswaldo Cruz ; 107(3): 433-436, May 2012. tab
Article in English | LILACS | ID: lil-624029

ABSTRACT

The extensive use of azole antifungal agents has promoted the resistance of Candida spp to these drugs. Candida glabrata is a problematic yeast because it presents a high degree of primary or secondary resistance to fluconazole. In Brazil, C. glabrata has been less studied than other species. In this paper, we compared the activity of three major classes of antifungal agents (azoles, echinocandins and polyenes) against fluconazole-susceptible (FS) and fluconazole-resistant (FR) C. glabrata strains. Cross-resistance between fluconazole and voriconazole was remarkable. Among the antifungal agents, the echinocandins were the most effective against FS and FR C. glabrata and micafungin showed the lowest minimal inhibitory concentrations.


Subject(s)
Humans , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Candida glabrata/drug effects , Echinocandins/pharmacology , Fluconazole/pharmacology , Pyrimidines/pharmacology , Triazoles/pharmacology , Candida glabrata/isolation & purification , Drug Resistance, Fungal/drug effects , Lipopeptides/pharmacology , Microbial Sensitivity Tests
8.
Rev. chil. infectol ; 28(6): 529-536, dic. 2011. ilus, tab
Article in Spanish | LILACS | ID: lil-612151

ABSTRACT

The echinocandins, caspofugin, micafungin, and anidulafungin, are lipopeptides that inhibit fungal growth by binding to β - (1.3) d glucan synthase. This enzyme is responsible for the formation of the peptidoglycan cell wall, and it is essential in fungi such as Candida spp, but less important in the case of Aspergillus and Fusarium species. We review the history, pharmacology and clinical trials that have showed clinical efficacy similar to amphotericin B for the management of fungal infections such as candidemia, invasive candidiasis and aspergillosis, even in cases refractory to initial treatment. These drugs have less toxicity and discontinuation is uncommonly required. Despite similar spectrum and tolerability, there are several pharmacological differences. Only a few clinical trials compare the clinical efficacy between them and their clinical application cannot be generalized. However, the echinocandins have demonstrated clinical efficacy in patients with invasive candidiasis and in others forms of systemic mycoses.


Las equinocandinas -caspofugina, micafungina y ani-dulafungina- son lipopéptidos que inhiben el crecimiento fúngico al unirse a la β-(1,3) d glucano sintetasa, enzima esencial para la síntesis en la pared celular de hongos como Candida spp, y menos importante en el caso de especies de Aspergillus y Fusarium. Se revisa la historia, farmacología y los diferentes ensayos clínicos que han evidenciado similar eficacia clínica a la de anfotericina B para el manejo de infecciones micóticas como candidemia, candidiasis invasora y aspergilosis, inclusive en casos refractarios al manejo inicial. Estos medicamentos tienen menor toxicidad y en pocos casos hay necesidad de retiro del tratamiento. Dado su espectro y tolerabilidad similar, su farmacología permite diferenciarlas. Se dispone de información limitada de estudios clínicos que las comparen entre ellas, limitando la extrapolación de la información a todo el grupo. Sin embargo, presentan eficacia clínica comprobada en pacientes con varias micosis invasoras.


Subject(s)
Humans , Antifungal Agents/pharmacology , Aspergillus/drug effects , Candida/drug effects , Echinocandins/pharmacology , Lipopeptides/pharmacology , Aspergillus/classification , Clinical Trials as Topic , Candida/classification , Microbial Sensitivity Tests
9.
Article in English | IMSEAR | ID: sea-136347

ABSTRACT

Background & objectives: A cyclic lipopeptide, surfactin produced by a strain of Bacillus subtilis subsp. subtilis (VCRC B471) was found to exhibit activity against both the larval and pupal stages of mosquitoes. The present study was aimed at increasing the production of the mosquitocidal metabolite by modifying the conventional medium. Methods: Enhancement of mosquitocidal metabolite production was attempted by replacing the existing micronutrients of the conventional NYSM and supplementing the medium with additional amounts of glucose. The LC50 value of culture supernatant (CS) against the larval and pupal stages of Anopheles stephensi was determined. Crude mosquitocidal metabolite (CMM) was separated from the CS, identified by MALDI-TOF analysis and its LC50 dosage requirement for the pupal stage of the above mosquito species determined. Results: The medium containing a new composition of micronutrients and glucose up to 1 per cent resulted in increased metabolite production. The LC50 value of the CS obtained in the improved medium against larvae and pupae of An. stephensi was 5.57 and 0.71 μl/ml, respectively. The yield of CMM was doubled in the improved medium. MALDI-TOF analysis revealed that the CMM was surfactin. Interpretation & conclusions: The new improved medium enhanced the production of mosquitocidal metabolite as the dosage required for inciting 50 per cent mortality among the pupal stages of mosquitoes was only half of that required when the metabolite was produced in the conventional medium. The mosquitocidal metabolite was identified as surfactin, a cyclic lipopeptide and biosurfactant.


Subject(s)
Animals , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/pharmacology , Culicidae/drug effects , Culture Media/chemistry , Humans , Insecticides , Lipopeptides/biosynthesis , Lipopeptides/chemistry , Lipopeptides/pharmacology , Peptides, Cyclic/biosynthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology
10.
Braz. j. med. biol. res ; 43(9): 860-868, Sept. 2010. ilus
Article in English | LILACS | ID: lil-556867

ABSTRACT

Tolerance to lipopolysaccharide (LPS) occurs when animals or cells exposed to LPS become hyporesponsive to a subsequent challenge with LPS. This mechanism is believed to be involved in the down-regulation of cellular responses observed in septic patients. The aim of this investigation was to evaluate LPS-induced monocyte tolerance of healthy volunteers using whole blood. The detection of intracellular IL-6, bacterial phagocytosis and reactive oxygen species (ROS) was determined by flow cytometry, using anti-IL-6-PE, heat-killed Staphylococcus aureus stained with propidium iodide and 2',7'-dichlorofluorescein diacetate, respectively. Monocytes were gated in whole blood by combining FSC and SSC parameters and CD14-positive staining. The exposure to increasing LPS concentrations resulted in lower intracellular concentration of IL-6 in monocytes after challenge. A similar effect was observed with challenge with MALP-2 (a Toll-like receptor (TLR)2/6 agonist) and killed Pseudomonas aeruginosa and S. aureus, but not with flagellin (a TLR5 agonist). LPS conditioning with 15 ng/mL resulted in a 40 percent reduction of IL-6 in monocytes. In contrast, phagocytosis of P. aeruginosa and S. aureus and induced ROS generation were preserved or increased in tolerant cells. The phenomenon of tolerance involves a complex regulation in which the production of IL-6 was diminished, whereas the bacterial phagocytosis and production of ROS was preserved. Decreased production of proinflammatory cytokines and preserved or increased production of ROS may be an adaptation to control the deleterious effects of inflammation while preserving antimicrobial activity.


Subject(s)
Adult , Female , Humans , Male , Lipopeptides/pharmacology , Lipopolysaccharides/pharmacology , Monocytes/immunology , Pseudomonas aeruginosa/immunology , Reactive Oxygen Species/metabolism , Staphylococcus aureus/immunology , /immunology , Monocytes/drug effects , Monocytes/metabolism , Phagocytosis/immunology , Pseudomonas aeruginosa/metabolism , Reactive Oxygen Species/immunology , Staphylococcus aureus/metabolism , Toll-Like Receptors/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL